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We have investigated the flow of dry granular materials through vertical channels
in the regime of dense slow flow using video imaging of the particles adjacent to
a transparent wall. Using an image processing technique based on particle tracking
velocimetry, the video movies were analysed to obtain the velocities of individual
particles. Experiments were conducted in two- and three-dimensional channels. In
the latter, glass beads and mustard seeds were used as model granular materials,
and their translational velocities were measured. In the former, aluminium disks with
a dark diametral stripe were used and their translational velocities and spin were
measured. Experiments in the three-dimensional channels were conducted for a range
of the channel width W , and for smooth and rough sidewalls. As in earlier studies,
we find that shearing takes place predominantly in thin layers adjacent to the walls,
while the rest of the material appears to move as a plug. However, there are large
velocity fluctuations even in the plug, where the macroscopic deformation rate is
negligibly small. The thickness of the shear layer, scaled by the particle diameter dp,
increases weakly with W/dp. The experimental data for the velocity field are in good
agreement with the Cosserat plasticity model proposed recently. We also measured
the mean spin of the particles in the two-dimensional channel, and its deviation from
half the vorticity. There is a clear, measurable deviation, which too is in qualitative
agreement with the Cosserat plasticity model. The statistics of particle velocity and
spin fluctuations in the two-dimensional channel were analysed by determining their
probability distribution function, and their spatial and temporal correlation. They
were all found to be broadly similar to previous observations for three-dimensional
channels, but some differences are evident. The spatial correlation of the velocity
fluctuations are much stronger in the two-dimensional channel, implying a pronounced
solid-like motion superimposed over an uncorrelated fluid-like motion. The strong
spatial correlation over large distances has led us to propose a mechanism for the
production of velocity fluctuations in the absence of a macroscopic deformation rate.

1. Introduction
One of the striking phenomena in the flow of granular materials is shear localization,

or the tendency of the material to shear predominantly in thin regions, while large por-
tions remain virtually undeformed. This feature is particularly prevalent in the regime
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of dense slow flow where grain interactions are abiding, and the normal and tangential
contact forces, the latter arising from Coulomb friction, are the dominant mechanisms
for the transmission of stress. Though it is often stated in the literature that the
thickness of the shear layer is roughly constant (about 10 grain diameters), experi-
mental evidence contrary to this assumption has long been available (Nedderman &
Laohakul 1980).

A prominent feature of dense slow granular flows is the rate-independence of
the stress (Tardos, Khan & Schaeffer 1998; Albert et al. 1999). Another important
feature, first observed by Reynolds (1885), is that deformation is usually accompanied
by dilation, or reduction in the bulk density, of the material. For the continuum
mechanical treatment of slow granular flows, constitutive theories for the stress,
having roots in soil mechanics and metal plasticity, have been proposed, of which
the critical-state theory (Schofield & Wroth 1968; Jackson 1983) is perhaps the most
widely used. They are formulated to capture the features mentioned above, and have
been used with some success to model flow in hoppers and bunkers (Brennen &
Pearce 1978; Michalowski 1987; Prakash & Rao 1991; Cleaver & Nedderman 1993).
However, these theories fail for viscometric flows; they predict that the entire material
behaves as a rigid block, slipping at the walls (Tejchman & Wu 1993; Mohan, Nott
& Rao 1997). For reasons that will shortly become apparent, we refer to these as the
‘classical’ plasticity theories.

The inability of classical plasticity theories to capture thin shear layers is due
to the absence of a material length scale in the constitutive relations. Attempts to
correct this deficiency have been made by treating granular materials as Cosserat
continua (Mühlhaus & Vardoulakis 1987; Mühlhaus 1989; Tejchman & Gudehus
1993; Tejchman & Wu 1993), which introduces a material length scale in the
constitutive relations. However, these studies addressed only the initiation of plastic
flow, and posed the equations in terms of strain increments. The model was extended
for sustained flow by Mohan et al. (1999, 2002), who developed a rigid–plastic
Cosserat plasticity model, which they called the ‘frictional Cosserat’ model, in which
the constitutive relations are posed in terms of strain rates.

The Cosserat continuum is named after Cosserat & Cosserat (1909), who first
proposed the idea; it was further developed by Eringen (1968), who incorporated
rotational microinertia and called it a micropolar continuum, and several other
workers. Three features distinguish a Cosserat continuum: (i) the Cauchy stress
tensor σ is, in general, asymmetric; (ii) a couple stress tensor M acts on the medium;
and (iii) an additional kinematic field, namely the local spin ω of each material point,
is introduced. None of these features are present in a classical continuum: the Cauchy
stress is symmetric, there is no couple stress, and the spin of a material point is not an
independent variable, but is equal to the rotation rate w induced by the macroscopic
velocity gradient, namely half the vorticity. Just as the Cauchy stress tensor (usually
referred to simply as the stress tensor), is defined such that n · σ is the force per unit
area on a plane of unit normal n, the couple stress tensor M is defined such that n · M
is the torque per unit area. For a granular material, the spin of a material point is the
mean particle spin at that location. (The spin of a particle is its angular velocity with
respect to a coordinate frame whose origin is at the particle centre.) As a consequence
of the asymmetry of the Cauchy stress and the presence of a couple stress, the angular
momentum balance, which is implicitly satisfied in a classical continuum, must be
enforced in a Cosserat continuum.

Apart from the introduction of a material length scale, there is a sound fundamental
reason for treating dense granular materials as Cosserat continua. It has been shown
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in rather general terms that the presence of non-central interaction forces between
particles lead to continuum equations of motion that represent a Cosserat continuum
(McCoy, Sandler & Dahler 1966; Jenkins, Cundall & Ishibashi 1989; Lun 1991). In
slow granular flows, Coulomb friction is the dominant interaction force, which is
fundamentally non-central. It is therefore appropriate to model a granular material
as a Cosserat continuum.

The predictions of the frictional Cosserat model of Mohan et al. (1999, 2002) are
in good agreement with experimental data for flow in vertical channels (Nedderman
& Laohakul 1980; Natarajan, Hunt & Taylor 1995) and in cylindrical Couette cells
(Losert et al. 2000; Mueth et al. 2000). However, some predictions of the model have
so far not been tested. For example, the deviation of ω from w has not been measured
for sustained flow. Another important prediction of the model is that the shear-layer
thickness grows with the system size, though rather weakly. Nedderman & Laohakul
(1980) provide some data on this point, but there were substantial measurement
errors; the shear-layer thicknesses arrived at by fitting three different functional forms
to the measured velocity profile are substantially different.

In this study, we have conducted flow-visualization experiments of slow granular
flows in vertical channels and have made accurate measurements of the velocity
profiles. We have systematically studied the effect of the channel width, wall roughness
and particle roughness on the velocity field and thereby the thickness of the shear
layer, and compared the data with the predictions of the frictional Cosserat model
of Mohan et al. (1999, 2002). In addition, we have determined the mean particle spin
ω of circular disks flowing in a two-dimensional channel (i.e. a channel whose depth
is only slightly greater than the thickness of the disks), and determined its deviation
from half the vorticity w, thereby assessing one of the key predictions of the Cosserat
model. To our knowledge, this is the first study in which this kinematic Cosserat
effect has been measured experimentally for sustained flow.

It is pertinent to note that some studies have reported the presence of ‘wide shear
zones’ (Fenistein & van Hecke 2003, Fenistein, van de Meent & van Hecke 2004;
Cheng et al. 2006) in a modified cylindrical Couette device, in which a portion of
the bottom plate rotates with the inner cylinder, suggesting that it is surprising and
unusual. Though the flow field in this device is interesting in itself, the presence of
wide shear zones is not surprising in such a complex flow. The occurrence of shear
in regions of substantial width (and far from boundaries) is known to occur in much
simpler (but non-viscometric) flows, such as flow through a hopper.

The second aspect of this study is the statistics of particle velocity and spin
fluctuations. Our understanding of the hydrodynamics of molecular fluids has
benefited greatly from knowledge of the statistics of molecular motion. It is therefore
reasonable to presume that we may derive insight into the macroscopic behaviour
of granular materials by studying the statistics of particle motion. The pronounced
difference in the rheological behaviour of dense granular materials and conventional
fluids prompts the question of whether there is a fundamental difference in their
statistical nature. In a recent study (Moka & Nott 2005), we had reported the
statistics of particle velocity fluctuations of glass beads in a three-dimensional
vertical channel. We had found evidence of ‘universal’ statistics, e.g. the probability
distribution function of velocity fluctuations was found to be independent of the
location in the channel, the channel width, or the wall roughness. Here, we report
measurements of the statistics of translational velocity and spin fluctuations for the
flow of disks in a two-dimensional channel, and compare our results with those of
Moka & Nott.
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Figure 1. Schematic of the vertical channel used in our experiments. The front and back walls
are glass plates and the sidewalls are machined aluminium bars. In some of the experiments,
the inner surfaces of the sidewalls were roughened by sticking a sheet of sandpaper. The
dimensions are H = 45 cm, D = 50 cm, and W variable for the three-dimensional channel, and
H =96 cm, D = 6 mm, and W = 19 cm for the two-dimensional channel. The exit slot is a circle
of diameter 9 mm in the former, and a rectangle of dimensions 50 × 6 mm2 in the latter. In the
two-dimensional channel, a small stretch (≈10 × 6 mm2) of the base on each side of the exit
slot was vibrated to disrupt arch formation.

2. Experimental set-up
For the three-dimensional channel, the flow chamber consisted of two aluminium

sidewalls, and smooth, transparent glass plates used as the front and back walls
(figure 1). The entire assembly was supported by a rigid metal frame, with a provision
to slide the sidewalls along horizontal grooves so that width 2W of the channel could
be changed easily. The depth D and height H of the channel were fixed. The flow
was imaged through the front wall using a video camera. The channel was fed by
a hopper at the top, and an aluminium plate with a circular exit slot was fastened
at the bottom of the channel. The size of the exit slot determined the flow rate of
the material. Glass beads of mean diameter dp = 0.8 mm, and mustard seeds of mean
diameter dp =1.55 mm were used as model granular materials. The glass beads were
coated with a shiny black pigment to improve the contrast in the images (figure 2a).
The mustard seeds did not reflect enough light, yielding images of poor contrast from
which the particles could not be clearly identified; to overcome this, a small fraction of
the seeds were coated with a white pigment, which could be visualized easily (figure 2b).
The flow was studied for smooth and rough sidewalls; the former were the bare
aluminium bars, and the latter were obtained by sticking a sheet of 80 grit sandpaper
to the inner surface of the bars.
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Figure 2. The granular materials used in the experiments. (a) Glass beads of mean diameter
0.8 mm used in the three-dimensional channel. The beads were coated with a shiny black
pigment to improve contrast. (b) Mustard seeds of mean diameter 1.55 mm used in the
three-dimensional channel. A small fraction of the seeds were coated with a white pigment
(two of which are visible in the figure) for visualization. (c) Aluminium disks used in the
two-dimensional channel. Dark stripes are marked in the base of the diametral grooves cut on
the flat faces of the disks, to track the particle orientation. (d) View of the cylindrical surfaces
of the disks, showing the disks with smooth and rough surfaces. The latter were obtained by
knurling the surfaces. The grooves cut on the flat surfaces are clearly visible.

The two-dimensional channel was similarly constructed, except for the following
differences: its depth D = 6 mm was only slightly higher than the thickness of the
aluminium disks (5 mm) that were used as the model granular material, and the exit
slot was rectangular, with length 50 mm and depth equal to D. The small clearance
between the disks and the glass plates was necessary to allow smooth flow and yet
maintain a monolayer of disks. The sidewalls of the channel were roughened by
sticking 80 grit sandpaper. To enable the measurement of the particle spin, diametral
grooves were cut on the flat surfaces of each disk, and a dark stripe was marked on
the base of each groove (figure 2c, d). The stripe ended just short of the edge of the
disk, so that two adjacent disks whose grooves were aligned could be be distinguished.
A mixture of disks of diameter 9, 10 and 11 mm, with number fractions 0.34, 0.28
and 0.38, respectively, were used in order to avoid the crystalline order that occurs in
systems of uniformly sized disks. The mean diameter of the mixture was dp ≈ 10 mm.
To study the effect of particle roughness, the cylindrical surfaces of one batch of disks
were knurled (figure 2d). In order to keep the flow rate low enough that the dense
slow flow regime could be studied, the width of the exit slot had to be restricted to
50 mm. This, however, resulted in the formation of an arch at the exit that stopped the
flow. To disrupt the formation of an arch and ensure smooth flow, an electromagnetic
vibrator was used to vibrate a small stretch ( ≈10 mm) of the base on each side of the
exit slot. With the amplitude kept fixed at 0.16 mm, the lowest frequency (90 Hz) was
chosen at which the arches were consistently broken. While vibration was essential
to disrupt arch formation and thereby allow steady flow, the energy supplied by the
vibrator was so small that it did not directly cause particle motion far from the exit.
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This is substantiated by the lack of perceptible motion of the particles even 4–5 dp

above the exit slot in a static bed. Our measurements were made ≈50 dp above the
exit slot. Thus, the only role of vibration far from the exit is to allow steady flow
even when the width of the slot is small.

The particle size in the 80 grit sandpaper used to coat the walls is ≈200 μm. Hence,
the ratio of mean grain diameter to the size of the topographical features of the wall
is roughly 4 for the glass beads and 8 for the mustard seeds for the rough walls. The
size of the topographical features for the machined aluminium bars is ∼10 μm; hence,
the aforementioned ratio is ∼100 for the smooth walls.

Particle spin was first measured in granular materials by Becker & Hauger (1982);
they studied the shear of a collection of long rods in a cylindrical Couette device, with
the axes of the rods parallel to that of the cylinders. They used a flexible outer cylinder
that expanded to accommodate the dilation of the material upon shearing. However,
their data are for very small strain; the rotation of the inner cylinder in their study
was only 1.24◦ (as reported in Lippmann 1995). Thus, they measure a significant
radial strain increment, which will be zero at steady state. More recently particle
spin has been measured in cylindrical Couette flow (Howell, Behringer & Veje 1999;
Mueth et al. 2000) and in flow down an inclined chute (Bi et al. 2006). Mueth et al.
(2000) determined the mean spin profile indirectly, by requiring the velocity profiles
obtained by magnetic resonence imaging (MRI) and high-speed video imaging to
match; moreover, it does not appear that the mass-averaged velocity obtained by
MRI can distinguish between the spin of particles and the vorticity. Howell et al.
(1999) and Bi et al. (2006) measured the spin of disks by following the orientation of
stripes marked on the disks, as in our study. They do not discuss the accuracy with
which the stripe was painted, but the grooves in our disks were cut with machines
that are used to make precision machine screws, and the accuracy of machining is
greater than 100 μm, or 0.01 dp. With the exception of Bi et al. (2006), who studied the
contrasting regime of rapid flow in which particles interact by impulsive collisions,
none of the above studies compared the spin with half the vorticity.

3. Image acquisition and analysis
Typical images taken during the flow of the glass beads and aluminium disks in

the two- and three-dimensional channels are shown in figure 3. The acquisition of
good images with adequate contrast depends crucially on the method of illumination.
For glass beads, a narrow focused beam of light was ideally suited: the central part
of each bead appeared as a bright spot (figure 3a), and the periphery was much
darker. A distributed source of light resulted in multiple scattering, and therefore
poor contrast. The disks in the two-dimensional channel required a very different
illumination scheme, as the diametral stripe had to be distinguished from the rest
of the disk. The method that worked best was diffuse lighting from the back, which
helped in identifying the entire disk, and low-intensity diffuse lighting from the front,
which helped in distinguishing the stripe from the rest of the disk (figure 3b).

The video images were acquired by a CCD camera placed in front of the channels.
Three CCD cameras were used through the course of our investigation: a camera
(brand unknown) with 192 × 144 pixels capturing 25 frames per second (f.p.s), a
Basler A301fc camera with 640 × 480 pixels capturing 75 f.p.s. and a Kodak ES310
camera with 640 × 480 pixels capturing 125 f.p.s. For the two-dimensional channel,
only the Kodak camera was used. The camera was mounted on a translation stage to
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(a) (b)

Figure 3. (a) Snapshot of the glass beads flowing in the three-dimensional channel; the bright
spots are the light reflected from the central parts of the beads. The images were deliberately
taken slightly out of focus to increase the size of the bright spots (cf. figure 2a), thereby
easing particle detection. (b) Snapshot of the aluminium disks flowing in the two-dimensional
channel; the dark lines marked on the grooves were used to measure the particle spin.
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Figure 4. (a) Intensity plot for the snapshot of glass beads in figure 3(a). The x- and y-axes
are the Cartesian coordinates, in pixels, and the z-axis is the intensity, digitized to 256 grey
levels. (b) Thresholded image of the intensity in panel (a). The centroids of the white spots are
taken as the centroids of the corresponding particles.

facilitate imaging at various positions in the y-direction. The movies were concurrently
transferred to a computer, and the images processed subsequently.

Image analysis involved the three steps of smoothing, thresholding and particle
detection (Crocker & Grier 1996; Guezennec & Kiritsis 1990). In the smoothing step,
the intensity of each pixel is replaced by a weighted average of the intensity of the
pixels around its centre, including itself; we used a Gaussian weighting, which rapidly
decays with distance. Smoothing helps remove fluctuations in intensity introduced
during acquisition, digitization, or compression of the images. In the second step, a
threshold intensity is set, above which pixels are deemed to be white (intensity 1),
and below which they are deemed to be black (intensity 0). Thus, thresholding
converts a grey-scale image to black-and-white, thereby maximizing contrast. The
choice of the threshold intensity is determined by a tradeoff between maximizing the
size of the bright spots (and thereby the accuracy with which the centroid can be
determined), and minimizing the frequency of merging of adjacent spots. Figure 4(a)
shows the intensity plot for a typical image of the glass beads, and figure 4(b) shows
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(a) (b)

Figure 5. (a) Image of the aluminium disks flowing in the two-dimensional channel after
smoothing, thresholding, segmentation and erosion. (b) The image of the stripes of the
particles in (a), obtained by setting a lower threshold intensity.

its thresholded image. In the particle detection step, the particles are identified as
contiguous regions of intensity 1. Only the spots whose area falls between pre-set
minimum and maximum values are identified as particles, in order to filter the noise,
and discard occurrences of merged spots (an instance of the latter can be seen in
figure 4b). The centroids of the spots are determined, which are then taken to be the
centres of the particles. As observed in previous studies (Moka & Nott 2005; Orpe &
Kudrolli 2007), this procedure provides the particle centre with sub-pixel resolution.

The images of the disks in the two-dimensional channel required two additional
steps before particle detection. In figure 3(b), it appears that the disks are connected
by narrow ‘bridges’. This is an artefact of the distributed lighting at the back, as very
little light passes through the regions near the points of contact between particles. To
distinguish the particles, an image segmentation, or ‘watershed’, algorithm (Vincent &
Soille 1991) was used after the thresholding step. This creates a narrow ‘channel’
cutting through in the bridges. The channels were then widened by uniformly eroding
the edges of the particles. The image obtained from figure 3(b) after thresholding,
segmentation and erosion is shown in figure 5(a). Here, the intensity value of a black
pixel is set to unity, and a white pixel to zero. The particle detection and centroid
determination then proceeded as described above. The stripes on the disks were
detected by setting a lower intensity threshold; the image obtained thus is shown in
figure 5(b). The orientations of the stripes were determined by fitting an ellipse to each
stripe, and determining the angle subtended by its major axis with the horizontal.

The image processing for the three-dimensional channel was performed using our
own code written in C. For the two-dimensional channel, we used the software ImageJ
(http://rsb.info.nih.gov/ij/); all the image-processing steps mentioned above, namely
smoothing, thresholding, segmentation, erosion, centroid determination and ellipse
fitting, are available either as options or plugins in ImageJ. The final result from
image processing is the centroids of all the particles, and, in the case of the disks,
their orientations.

The velocities of the particles were determined by the particle-tracking velocimetry
(PTV) method. In this technique, the position of each particle is tracked in time and
its velocity determined therefrom. In the first frame, all the identified particles are
listed (Guezennec & Kiritsis 1990) and their centroids determined. The standard PTV
technique uses an estimate of the local velocity to identify the expected location of a
particle in the next frame, i.e. after a time δt , and searches for its centroid around the
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expected location. This technique is not suitable for granular flows, owing to the large
fluctuations in particle velocities. Instead, the following technique was used: given
the location r i ≡ (xi, yi) of the centroid of particle i in the first frame, its location
in the next frame was found by searching within a circle of radius rs centred at r i .
If rs/δt is much greater than the maximum velocity of the particles, the position of
every particle can be identified in the next frame. The velocity of the particle then
is the displacement δr divided by the time interval δt . Similarly, the change in the
orientation of the stripe of a particle between successive frames determines its spin. If
particle i cannot be located within the search radius, presumably because it has moved
away from the front wall, it is deleted from the list; similarly, if a particle that did not
exist in the previous frame is detected, it is added to the list. We took rs = dp/2, and
ensured that the maximum particle speed is significantly smaller than rs/δt . For the
glass beads imaged at 25 f.p.s. this condition sets the maximum measurable speed at
10 mm s−1; the average vertical velocity of the particles was at most 3.5 mm s−1, well
below the maximum measurable speed. For the aluminium disks imaged at 125 f.p.s.
the maximum measurable speed was 66 cm s−1, while the maximum vertical velocity
in our experiments was about 5 cm s−1.

Profiles of the mean properties were determined by notionally dividing the channel
into vertical bins of width dp and averaging the relevant particle properties in each
bin over a sufficient length of time. The mean velocity ux , the root mean square
(r.m.s.) velocity fluctuation v and the probability distribution function of velocity
fluctuations f in each bin were calculated, and assigned to the mid-point of the bin.
To ensure good statistics, about 9000 frames were analysed for each position (bin) in
the channel.

The accuracy of the PTV method have been discussed previously (Guezennec &
Kiritsis 1990; Haitao, Reeves & Louge 2004), and we therefore do not dwell on it
here. As discussed in Haitao et al. (2004), the errors in the mean velocity are far
smaller than those in the r.m.s. fluctuation velocity, as random errors sum to zero in
the former, but do not in the later. We estimate that the error in the measurement of
the r.m.s fluctuation velocity and spin is below 2 %, arising mainly from the presence
of a velocity gradient across the bin. We could detect no variation in the data for the
mean velocity profile and the probability distribution function of velocity fluctuations
determined with the cameras of different speeds.

4. Experimental results
Table 1 lists the experiments that were conducted, indicating the geometry, the

granular material used and the nature of the walls. As stated earlier, ‘smooth walls’
refer to the bare aluminium surface, and ‘rough walls’ to the case were the aluminium
surface was coated with sandpaper. The roughness of the walls in slow flow is usually
characterized by the angle of wall friction δ (Nedderman 1992, p. 40), defined as

tan δ =
S

N
, (4.1)

where S and N are the magnitudes of the shear and normal stresses at the wall.
We measured δ by placing a light metal ring (diameter 70 mm, height 20 mm) on an
initially horizontal wall surface, filling it to the brim with the granular material, and
slowly tilting the surface until the ring just begins to slide. The angle of wall friction
δ is equal to the critical angle θc of the surface with the horizontal at which sliding is
first detected. The angle of internal friction φ, which is a measure of the roughness
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Experiment Channel width Granular W/dp Type of wall
(2W ) material

E1 26.0mm Glass beads 16.3 Smooth
E2 36.75 mm Glass beads 23.0 Smooth
E3 52.0mm Glass beads 32.5 Smooth
E4 77.25 mm Glass beads 48.3 Smooth
E5 101.5mm Glass beads 63.4 Smooth
E6 26.25 mm Glass beads 16.4 Rough
E7 37.5mm Glass beads 23.4 Rough
E8 50.75 mm Glass beads 31.7 Rough
E9 75.0mm Glass beads 46.9 Rough
E10 102.5mm Glass beads 64.1 Rough
E11 37.5mm Glass beads 23.4 Rough
E12 68mm Mustard seeds 21.9 Rough
E13 38 cm Aluminium disks 19.0 Smooth
E14 38 cm Aluminium disks 19.0 Rough

Table 1. The experiments conducted.

φ

Glass beads 23.3◦ (1.2◦)
Mustard seeds 28.9◦ (1◦)

δ

Glass beads on smooth wall 16.6◦ (0.9◦)
Glass beads on rough wall 21.4◦ (2◦)
Glass beads on glass plate 16.5◦ (0.7◦)
Mustard seeds on rough wall 23.5◦ (0.5◦)

Table 2. Frictional properties of the granular materials and the walls. The average of ten
independent measurements are given, with the standard deviation in parentheses.

of the granular material in the bulk (Nedderman 1992, p. 25), was measured in the
same manner, but with the ring placed on a bed of granular material; φ is then
determined from the relation sin φ = tan θc. The average of ten independent trials for
each combination of granular material and wall surface are reported in table 2, with
the standard deviation given in parentheses.

The method we have used to determine the angles of friction is a crude version of
the Jenike shear cell (Jenike 1961), in which a normal load is applied on the material
at the top of the ring, and the movement of the ring and the applied shear force
are determined by displacement and force transducers. In our tests, the normal and
shear stresses come from the gravitational body force, and plastic yield is detected
by eye. The latter, being prone to error, may be an explanation for the deviations
between repeated trials. However, such deviations are also observed in the Jenike
cell and other similar instruments, and are related to the sensitivity of the material
properties to its construction history, which affects the fabric, or network of contacts.
The angle of friction obtained in our ring test may differ from that prevailing in
the channel, because of differences in the geometry; we treat our measurements as
indicative values only.

Note that the angle of friction of the glass beads on a glass plate is significant,
though the latter is topographically very smooth. It is well known that surfaces
that are atomically smooth (such as mica sheets) also experience a frictional force
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Figure 6. (a) Time evolution of the mean velocity and r.m.s. velocity fluctuation at a distance
of 44.3 dp from the left-hand wall for glass beads flowing in a smooth-walled channel of
half-width W =63.4 dp (experiment E5 in table 1). (b) Velocity profiles at �, 18 cm; �, 13 cm
from top, for a rough-walled channel of half-width W/dp = 23.4 (experiment E7 in table 1).

when sliding over each other (Krim 1996), so the relation between the topographical
roughness of a surface and its frictional properties is a complex one. For the purpose
of this study, we refer to walls that offer (relatively) high friction and low friction as
rough and smooth walls, respectively.

4.1. Results for three-dimensional channels

We first present the results for rough-walled channels. As our interest is in steady
fully developed flow, image acquisition was commenced only when sufficient time
elapsed after starting the flow. The initial solids fraction of the material (i.e. as
poured into the channel) was roughly ν =0.57; we had no way of systematically
controlling it. However, we expect the solids fraction field at steady fully developed
state to be insensitive to the initial solids fraction. The time variation of the vertical
mean velocity and the r.m.s. velocity fluctuation, averaged over a short time interval,
is shown in figure 6(a). It is evident that a steady state is reached 2–3 min after the
start of the flow. Figure 6(b) shows the velocity profile for half the channel, measured
at two different heights; the profiles are almost identical, indicating that the flow is
fully developed. All the data for the three-dimensional channel presented henceforth
are for a distance of 18 cm from the top of the channel. Because of the symmetry of
the problem about y = W (some variables, such as the spin ω and the shear stress σyx

are antisymmetric), we report all variables for the left half of the channel only.

4.2. Effect of channel width

In figure 6(b), it is evident that the material moves as a plug in the core region of
the channel. (We reiterate that our measurements are only for the layer of particles
adjacent to the front glass wall, and hence our measurements are not for the ‘true’
core far from the front and back walls. A discussion on the effect of the front wall
is given in § 4.5.) In conformity with previous studies (Nedderman & Laohakul 1980;
Mohan et al. 1999; 2002), we define the dimensionless shear-layer thickness Δ as the
distance from the wall, scaled by dp, at which the velocity reaches 95 % of the velocity
at the symmetry axis u0 ≡ ux(y = W ), i.e.

ux(dpΔ) = 0.95 u0. (4.2)
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Figure 7. Velocity profile for glass beads, scaled by the velocity at the symmetry axis
u0 ≡ ux(W ), in rough-walled channels of different width. The distance from the left wall is
scaled by the particle diameter dp in (a), and by the channel half-width W in (b).

Owing to the small spatial fluctuations in the data, we take u0 as the average of
ux over a range of y around the symmetry axis y = W , within which it is roughly
constant. In figure 6b, Δ =10.3, but it increases when the dimensionless channel width
W/dp is increased. Figure 7 shows the velocity profiles scaled by u0 for rough-walled
channels of five different widths. A systematic rise of Δ with W/dp is evident in
figure 7(a). However, it is also clear that Δ has only a weak dependence on W/dp.
If we plot ux against y/W (figure 7b), we see that the shear layer occupies a smaller
fraction of the channel as W/dp increases; in other words, Δ × (dp/W ) is a decreasing
function of W/dp. Another notable observation is that the slip velocity at the wall
decreases as W/dp increases. All these trends are in agreement with the prediction of
the frictional Cosserat model of Mohan et al. (1999, 2002). Comparisons of the data
with the model are made in § 4.7.

4.3. Effect of wall roughness

All the data presented thus far are for rough walls. A comparison of the velocity pro-
files of glass beads obtained for smooth and rough walls, with the channel width kept
almost equal, is shown in figure 8. The thinner shear layer and higher slip velocity
for the case of smooth walls is apparent. This influence of the wall roughness on
the shear-layer thickness is in conformity with the observation of Nedderman &
Laohakul (1980), and is also predicted by the frictional Cosserat model of Mohan
et al. (1999, 2002), as shown in § 4.7.

The velocity profiles for smooth-walled channels of five different widths are shown
in figure 9. Unlike the case of rough walls, we do not find a systematic dependence
of the velocity profile on W/dp – considering figure 9(a), we see that the velocity in
the shear layer decreases with increasing W/dp up to W/dp = 48.3, but increases on
further increasing W/dp to 63.4. This non-monotonic variation can also be seen in
figure 9(b). We also find the variation of Δ with W/dp to be much weaker than in
the case of rough walls. We show in § 4.7 that this difference can be explained by the
frictional Cosserat model in terms of the difference in the ratio sin φ/ tan δ in the two
cases.
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Figure 8. Velocity profile of glass beads in �, smooth and •, rough-walled channels of
half-width W = 48.3 dp and 46.9 dp, respectively (experiments E4 and E9 in table 1).
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Figure 9. Velocity profile of glass beads in smooth-walled channels of different width. The
distance from the left wall is scaled by the particle diameter dp in (a), and by the channel
half-width W in (b).

4.4. Effect of the particle roughness

Next, we compare the velocity profiles for the two granular materials that we have
studied, namely glass beads and mustard seeds. As only a small fraction of the
mustard seeds (those coated with the white pigment) could be visualized, the imaging
had to be carried out for a much longer period of time to gather a sufficiently
large sample of particle velocities. Hence, we examined the flow of mustard seeds for
only one channel width, W/dp =21.9. We note in figure 10 that the shear layer is
considerably thinner for mustard seeds. This appears counter-intuitive, as the angles
of internal and wall friction for mustard seeds are higher than those of glass beads
(see table 2). However, in the frictional Cosserat model it is the ratio sinφ/ tan δ that
determines the thickness of the shear layer; the closer the ratio is to unity, the wider
the shear layer. From the data for φ and δ in table 2, we find this ratio to be 1.009 for
glass beads and 1.11 for mustard seeds. Hence the data are in qualitative agreement
with the theory. A comparison of the theoretical prediction of the velocity profile
with the data for mustard seeds is provided in figure 14(a).
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Figure 10. Velocity profile of �, glass beads and �, mustard seeds in rough-walled channels.
The dimensionless channel widths for the two cases are W/dp =23.4 and 21.9, respectively
(experiments E7 and E12, respectively, in table 1).
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Figure 11. (a) Unscaled r.m.s velocity fluctuation profile for glass beads flowing in
rough-walled channels of different width. (b) Comparison of the r.m.s velocity fluctuation
profiles, scaled by u0, for channels with �, rough and �, smooth walls. The channel width for
the two cases are W/dp = 31.7 and 32.5, respectively.

4.5. Velocity fluctuations

At short time scales, we can observe in the movies that the particles execute a stick–slip
motion, i.e. their velocities are not smooth functions of time. In addition, fluctuations
in the particle velocity arise from fluctuations in the packing, owing to the periodic
formation and collapse of small voids. These events are most probably related to the
formation and collapse of force chains, or chains of particles in contact that transmit
forces over distances of many dp.

Figure 11(a) shows the profiles of r.m.s. fluctuation velocity v for different values
of the dimensionless channel width W/dp. In all the cases, we find v to be highest at
the symmetry axis, where the gradient of mean velocity in the y-direction vanishes.
However, there is probably a velocity gradient in the z-direction, owing to the frictional
resistance offered by the glass walls. Though Nedderman & Laohakul (1980) report
that the retardation of the particle velocity by the glass walls is less than 4 %, we
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believe it is higher. This is suggested by our observation that the flow rate of the
material issuing from the exit slot is roughly 20 % higher than that calculated from the
velocity profile, assuming the bulk density to be constant. This suggests that the shear
rate dux/dz is finite adjacent to the front and back walls, and may be responsible for
the velocity fluctuations in the core region. Moreover, the microstructure near the flat
walls is likely to differ from that in the bulk, owing to the excluded volume-induced
layering of particles. However, these considerations do not explain why v is maximum
at the centre, as the shear rates in the y- and z-directions are both largest near the
walls. Moreover, Orpe & Kudrolli (2007) show that substantial velocity fluctuations
exist in regions far from all the walls. They imaged the motion of particles in the
bulk by filling the channel with a fluid whose refractive index matched that of the
particles. This method suffers from the drawback that the velocity fluctuations are
damped by the fluid; indeed, fluctuations may even be caused by the fluid, owing
to the long-range hydrodynamic interactions between particles. Nevertheless, it is
reasonable to suppose that it provides at least a qualitative picture of the behaviour
in the bulk. Thus, all the existing evidence points to the presence of substantial
velocity fluctuations in regions where the macroscopic shear rate is negligibly small.
The experiments of Ananda (2006) in cylindrical Couette flow also reveal similar
behaviour. This is an interesting and important observation, as the thermal energy
generated in a molecular fluid during flow, or the ‘pseudo-thermal’ energy in a granular
material in the rapid flow regime, come from the stress work, which is proportional
to the local shear rate. This point is discussed further in §5, where a mechanism
for the generation of fluctuations in the absence of a macroscopic shear rate is
proposed.

A comparison of the v profiles for smooth and rough sidewalls (figure 11b) is also
counter to expectation – it is roughly the same in the core for the two cases, but it
is higher in the shear layer for the smooth wall, though the shear rate in this case is
lower (as the slip velocity is higher).

4.6. Results for the two-dimensional channel

We now discuss the results of our experiments of the flow of aluminium disks in the
two-dimensional channel. Figure 12(a) shows the profiles of the mean translational
velocity and the r.m.s velocity fluctuation. The velocity for the three-dimensional
channel at approximately the same value of W/dp is given for comparison. We see
that the velocity varies much more sharply in the two-dimensional channel, and
consequently the shear layer is considerably thinner. Another significant difference is
in the velocity fluctuation (cf. figures 12a and 11): in the three-dimensional channel,
it decreases for a short distance from the wall, and then increases to a maximum
at the channel centre, whereas in the two-dimensional channel it increases for a
short distance from the wall, and then decreases to a minimum at the centre. Two
factors contribute to these differences: one is the stronger effect of the front and
back walls on the aluminium disks in the two-dimensional channel, and the second
is the additional translational and rotational degrees of freedom that the particles
in the three-dimensional channel possess. It is not clear to us which of these factors
dominate, and how they cause the observed differences. What is clear is that non-
invasive measurement of the mean and fluctuation velocity fields far from the front
and back walls is desirable.

The data in figure 12 are for the rough (knurled) aluminium disks (see figure 2d).
We found the velocity profile of the smooth aluminium disks to be almost identical
(Ananda 2006). Thus, the surface texture formed by knurling does not alter the
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Figure 12. (a) Profiles of the mean velocity ux and the r.m.s. fluctuation velocity v for
aluminium disks in the two-dimensional channel (W/dp = 19). The data for glass beads in the
three-dimensional channel of similar width (W/dp = 16.4) is given for comparison. The solid line
passing through the ux data for aluminium disks is a quintic spline fit. (b) Profiles of the mean
spin ωz and the r.m.s spin fluctuation ω′ (inset) for aluminium disks in the two-dimensional
channel. Both quantities are scaled by ω0 ≡ u0/W . The solid line passing through the ωz data
for aluminium disks is a quintic spline fit.

roughness of the medium, probably because it does not lead to interlocking, or
meshing, of particles in contact. All the results that follow for the two-dimensional
channel are for the rough aluminium disks.

The main purpose of conducting experiments in the two-dimensional channel was
to measure the particle spin. The profile of the mean spin ωz and the r.m.s spin
fluctuation ω′ are given in figure 12(b). It is apparent that ωz decays quickly with
distance from the wall, but the variation is not monotonic; spatial oscillations of
wavelength 2–3 dp are evident. The magnitude of ω′ is much larger, and it decays
much more slowly with y. Thus, though the mean spin is small outside the shear
layer, there are substantial spin fluctuations throughout the channel. The oscillations
in the ωz profile are a result of the ‘cog-wheel’ effect, i.e. particles in frictional contact
rotating in opposite directions. This effect is stronger when the particles are confined
to a monolayer, and is attenuated if the packing of particles is amorphous. Thus,
the amplitude of the oscillations is highest near the walls, where there is excluded
volume-induced order in the packing.

It was argued in §1 that a granular material in the slow flow regime behaves as a
Cosserat continuum, which differs in certain ways from a classical continuum. One
of the differences is that the mean spin may differ from half of the vorticity w. It is
therefore of interest to compare the two quantities in our experiment. As the disks
are constrained to move only in the (x, y)-plane, and rotate only in the z-direction, we
compare ωz with wz ≡ − (dux/dy)/2 in figure 13. The derivative of ux was obtained
from the functional form for ux(y) obtained by a spline fit of the data in figure 12(a).
We find that wz too decays rapidly with y and displays spatial oscillations. Note
that the oscillations of ωz and wz are nearly in register. The spin leads the vorticity,
and the difference ωz − wz decays with distance from the wall. We find a measurable
difference between ωz and wz in a layer of thickness ∼7 dp (see figure 16a) from the
wall. The relatively large magnitudes of ωz and wz at the wall obscure their variation
outside the shear layer, hence an enlarged view is shown in the inset of figure 13(b).
We believe that the constraint on the particles to reside in a single plane reduces
the extent of the region over which this kinematic Cosserat effect is measurable, as
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Figure 13. Profiles of �, the mean spin ωz and - · -, half the vorticity wz (both scaled by
ω0 ≡ u0/W ) for aluminium disks in the two-dimensional channel. The profile of wz is obtained
from the spline fit for ux(y) obtained in figure 12(a).

systems constrained to two dimensions exhibit much stronger spatial correlation (see
figure 21 and the accompanying text). Though the measurement of the rotation of
particles in three dimensions far from the front and back walls is an experimental
challenge, it would be of significant value in assessing whether the Cosserat effects
are present far from the boundaries.

4.7. Comparison with the frictional Cosserat model of Mohan et al. (1999)

As discussed in § 1, the predictions of the frictional Cosserat model (Mohan et al.
1999; 2002) were shown to be in good agreement with the data of Nedderman &
Laohakul (1980) and Natarajan et al. (1995) for flow in vertical channels, and the
data of Losert et al. (2000) and Mueth et al. (2000) for flow in cylindrical Couette
cells. It is therefore of interest to compare our data with the predictions of the model.

Here, we give only the governing equations of the model, and refer to the original
works for a detailed description. (Note that the governing equations below differ
slightly from those in Mohan et al. (1999) owing to a different choice of the Cartesian
reference frame.) To obtain the equations in dimensionless form, the variables are
scaled in the following manner: all lengths by W , the Cauchy stress σ by ρpgW , the

couple stress M by ρpgWdp, the velocity u by (gW )1/2, and the spin ω by (g/W )1/2.
Here, ρp is the density of the particles, and g the gravitational body force. For steady,
fully developed flow in the x-direction, and assuming no variation in the z-direction,
the balances of linear momentum reduce to

dσ yx

dy
= ν,

dσ yy

dy
= 0, (4.3)

and the balance of angular momentum to

ε
dMyz

dy
+ σ xy − σ yx = 0. (4.4)

Here, ε ≡ dp/W , and the lines over the variables indicate that they are dimensionless.
It is straightforward to show that the material is at a critical state (i.e. a state of
isochoric motion) everywhere. The first of (4.3), together with the fact that the material
is at critical state, implies that σ yy = σ c(ν) = constant, where σ c(ν) is the dimensionless
mean stress at critical state. As a result, the solids fraction ν is constant across the
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channel. This is a deficiency of the model, as it is well known (Natarajan et al. 1995;
Mueth et al. 2000) that the solids fraction is lower in the shear layer than in the plug.

The momentum balances are supplemented by the yield condition

a1

(
σ 2

xy + σ 2
yx

)
+ 2 a2 σxyσ yx +

M
2

yz

L2
= (σ c sinφ)2. (4.5)

Here, L is a mesoscopic length scale (scaled by dp), and a1 and a2 are dimensionless
constants (but only the ratio A ≡ a2/a1 is of relevance).

Equations (4.3)–(4.5), with boundary conditions

σ yx

σ yy

= − tan δ at y = 0, (4.6)

σ xy =0, σ yx = 0 at y =1. (4.7)

fully determine the stress fields. Boundary condition (4.6) is the friction boundary
condition at the wall (Nedderman 1992, p. 40; Mohan et al. 1999), and (4.7) is due
to the symmetry of the flow about the plane y = W (see Mohan et al. 1999).

The kinematic variables are determined by the flow rule, which relate the strain
rate and stress tensors. Mohan et al. (1999, 2002) used the associated flow rule, which
for the problem at hand reduces to

dux

dy
= − (1 + A)(σ xy + σyx) ωz

σ xy + Aσyx

, (4.8)

dωz

dy
= − 2(1 + A) Myz ωz

εL2(σ xy +Aσyx)
. (4.9)

The ux and ωz fields are obtained by solving (4.8) and (4.9), using the solution of the
stress fields already obtained, and the boundary conditions

ux = − εK ωz at y = 0, (4.10)

ωz = 0 at y = 1. (4.11)

Boundary condition (4.10) is the kinematic boundary condition proposed by Mohan
et al. (1999), relating the slip velocity and the particle spin at the wall, and (4.11) is a
statement of the antisymmetry of ωz about y =W . Though it is desirable, we do not
have a micromechanical model relating the constant K to the topographic features
of the wall.

The particular forms of the yield condition and the flow rule chosen above are
only to obtain a qualitative understanding of the frictional Cosserat model, and for
simplicity of the analysis. There is evidence that the Mohr–Coulomb yield condition
and a non-associated flow rule may be more suitable for granular materials. However,
the extension of the model to incorporate these refinements is straightforward.

The method of solution of (4.3)–(4.11) is discussed in Mohan et al. (1999). We shall
now compare the model predictions with our experimental data. It is readily deduced
from (4.3)–(4.5) that all components of the stress and couple stress are proportional
to σ c(ν). Since the flow rule involves only ratios of the stress components, the value of
the solids fraction ν does not affect the kinematic variables. Similarly, it is easily seen
from (4.8)–(4.11) that all the kinematic variables can be determined only to within
an arbitrary multiplicative factor. This factor is set by the flow rate, which the model
cannot determine unless we consider the flow in the region close to the exit slot.
However, when scaled by the velocity at the symmetry axis u0, the velocity profile is
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uniquely determined for a given set of parameters ε, φ, δ L, K and A. Similarly, the
spin profile is uniquely determined if scaled by u0/W . We shall therefore compare the
experimental and theoretical profiles scaled in this manner. The parameter ε ≡ dp/W

is set by the size of the channel and particles, and the parameters φ and δ were
measured independently for each set of particles and walls (see table 2). We do not
vary A, but keep it fixed at 1/3, as in the studies of Tejchman & Wu (1993) and Mohan
et al. (l999, 2002). The only parameters that we use to fit the model predictions to the
data are K and L.

For glass beads flowing in rough-walled channels, the values L = 20 and K = 3.6
provide a good fit of the velocity data for W = 64.1 dp. (The fit was judged by eye – we
did not attempt a systematic least-squares procedure to obtain the best fit.) The above
value of L was retained for all channel widths, for smooth and rough walls. The value
of K determines only the slip velocity, not the overall shape of the velocity profile.
For glass beads flowing in smooth-walled channels, K = 9.2 matched the slip velocity
for W =63.4 dp, which was retained for all the other channel widths. Mohan et al.
(2002) showed that L =10 fits the data of Mueth et al. (2000) for mustard seeds in
cylindrical Couette flow; we retained the same value and used K = 3.6 for determining
the theoretical prediction for mustard seeds flowing in a rough-walled channel.

Mohan et al. (1999) found L =10 to provide a good fit for the data of Nedderman &
Laohakul (1980) and Natarajan et al. (1995) for the flow of glass beads in vertical
channels. A reason for the significantly larger value of L required for fitting our data
could be the coating of the glass beads; the shiny black pigment seems to render the
particle surface smoother. However, the relation between L and the micromechanics
of particle interactions is an open issue, and it is far from clear why a smoother
surface should lead to an increase in the mesoscopic length scale.

Comparisons of the predicted velocity profiles with the data for glass beads and
mustard seeds are shown in figure 14. Considering first the results for glass beads, it
is clear that there is good agreement in general, but there is a slight difference which
grows as W/dp decreases. The agreement is not so good for mustard seeds – the
theory predicts a significantly thicker shear layer. A better fit may be achieved if a
smaller value is chosen for L, but we refrain from doing so for the reason mentioned
above. In all the cases, the predicted slip velocity at the wall agrees quite well with
the data, suggesting that the kinematic boundary condition (4.10) with constant K

may be an accurate representation.
Figure 15 shows the variation of the dimensionless shear-layer thickness Δ, defined

in (4.2), with W/dp. The values determined from the velocity profiles obtained ex-
perimentally (symbols) for glass beads are shown alongside the predictions of the
frictional Cosserat model for rough and smooth walls. In both cases, there is good
qualitative agreement – it is clear that Δ grows with W/dp, but it is also clear that the
growth is weak. In quantitative terms, the model under-predicts Δ slightly for small
W/dp.

In the asymptotic limit W/dp → ∞, the Cosserat model predicts the following
scaling for Δ (Mohan et al. 1999):

Δ =

⎧⎨
⎩

1.498
γL

2(β γ − 1)
tan δ < sinφ,

1.275 (L2/2)1/3 (W/dp)
1/3 tan δ = sinφ,

(4.12)

where β ≡ sinφ/ tan δ, γ ≡ β + (β2 − 1)1/2. (Mohan et al. (1999) used the symbol N in
place of β , but since N is often used to denote the normal stress, we use the latter in
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Figure 14. Comparison of the predictions of the frictional Cosserat model with our
experimental data for the flow of glass beads and mustard seeds in smooth, and rough-walled
channels. sw, smooth walls; rw, rough walls. (a) The channel width for glass beads are
W/dp = 23 (sw) and 23.4 (rw), and for mustard seeds is 21.9 (rw). (b) W/dp = 32.5 (sw) and
31.7 (rw). (c) W/dp = 48.3 (sw) and 46.9 (rw). (d) W/dp = 63.4 (sw) and 64.1 (rw).

this work.) The case of tan δ = sinφ is usually referred to as the condition of ‘fully
rough walls’. From our measurements of φ and δ (see table 2), we find that for glass
beads β =1.01 for rough-walled channels, and β =1.33 for smooth-walled channels.
The higher slope of the data for rough walls infigure 15 is in agreement with the
above prediction.

We next compare the predictions of the spin and vorticity profiles with our
experimental data. For the theory, we have used the parameters φ, δ, L and K for
glass beads in a rough-walled channel, as the values for a monolayer of aluminium
disks are not known. Moreover, we are only interested in a qualitative comparison,
as the measurements are for a two-dimensional channel while the theory is for a
three-dimensional channel of infinite extent in the z-direction. We see in figure 16 that
the predictions qualitatively resemble our observations. The spin leads the vorticity,
and both fall off with distance from the wall, though the decay is significantly faster
in the data. A difference between the model predictions and the experimental data is
that ωz and wz vary smoothly in the model, while small spatial oscillations in ωz are
observed in the data. As mentioned in § 4.6, the faster decay and the oscillations are
at least partly a result of confinement of the particles to a monolayer.
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Figure 15. Effect of channel width on shear layer thickness Δ (see (4.2) for definition) for
glass beads flowing in smooth- and rough-walled channels. The theoretical prediction is derived
for the parameter values L =20, and K = 9.2 and 3.6 for smooth and rough walls, respectively.
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Figure 16. Profiles of �, the spin ωz, - - -, half the vorticity wz ≡ −(dux/dy)/2, and -·-, their
difference, all scaled by u0/W . (a) Data from the two-dimensional channel. (b) Predictions of
the same by the frictional Cosserat model.

Although the stresses were not measured in this study, the predictions of the model
are shown in figure 17 to provide a qualitative feel of is main features. A thorough
study of the effect of the model parameters on the stress fields may be found in
Mohan et al. (1999). The parameter values used here are the same as in figure 16, but
results for both smooth and rough walls are given. The solids fraction is determined
by (4.6), and therefore depends on the wall roughness. However, its values for the
smooth and rough walls differ so little that σ yx is almost identical in the two cases.
A substantial difference between σ yx and σ xy is evident in figure 17(a). Figure 17(b)

shows that the couple stress Myz is negative, and its magnitude increases with distance
from the wall; its slope vanishes at the symmetry axis, as required by the boundary
conditions (4.7) in conjunction with the angular momentum balance (4.4).
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Figure 17. Predictions of the frictional Cosserat model of (a) the shear stresses σxy and σyx

and (b) the couple stress Myz for smooth- and rough-walled channels. See text for parameter
values.

5. Statistics of particle velocity and spin
As stated in §1, our motivation for studying the statistics of particle velocity is to

make a connection between the microscopic particle dynamics and the macroscopic
rheological response of the material. This connection has been made for simple
molecular fluids, and to an extent, even in complex fluids such as polymer solutions
and melts. There is clearly a marked difference in the way dense granular materials
and conventional fluids respond to applied forces, and one of the questions is whether
there is also a fundamental difference in their statistical nature. Molecular fluids
are close to thermodynamic equilibrium even when subjected to very large shear
rates, but granular flows are fundamentally far from equilibrium, as particles have no
fluctuational motion in the absence of forcing. As a result, the probability distribution
function (PDF) of particle velocity fluctuations in molecular fluids is very close to the
Maxwell–Boltzmann distribution, but a priori we do not expect this to be the case for
dense granular flows. We also expect the PDF for the latter to depend on the shear
rate, as that is what provides energy for the fluctuations.

Moka & Nott (2005) reported experimental measurements of the statistics of
particle velocity fluctuations in dense granular flow through three-dimensional vertical
channels. Their main findings were that the PDF of particle velocity fluctuations is
non-Maxwellian, anisotropic, and follows a power law at large velocities, in agreement
with the first expectation above. Remarkably, the second expectation was shown to
be incorrect: the PDFs are identical in the shear layer and the core, when the velocity
fluctuation is suitably normalized; there is almost no macroscopic deformation rate
in the core, and we therefore expect the nature of fluctuations there to be different, if
not absent altogether. The spatial correlation of the velocity fluctuations suggests a
mechanism for the generation of fluctuations even in the absence of shear (Moka &
Nott 2005), as discussed below.

In this section, we discuss our measurements of the statistics of fluctuations in
the translational velocity and spin in two-dimensional channels, and compare our
results with that of three-dimensional channels. The distribution of velocities in the
x- and y-directions (see figure 1) were determined as a function of position in
the channel. Defining the scaled velocity fluctuation in the x-direction ξx ≡ (cx −ux)/v,
the probability distribution function fx(ξx) is determined by making a histogram of the
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Figure 18. Probability distribution function for (a) vertical, and (b) horizontal particle velocity
fluctuations in the shear layer. Filled symbols represent positive fluctuations, open symbols
represent negative fluctuations, and the dotted line in the inset graph is the Maxwell–Boltzmann
distribution with the same variance. The straight lines are fits of the data for large velocity
fluctuations, showing power law decay of the PDF. Data from Moka & Nott (2005). c© 2005
the American Physical Society.

number distribution of ξx , and normalizing it so that
∫

fx(ξx) dξx = 1. The distribution
function fy(ξy) for horizontal velocities is determined similarly. This is done for each
bin (see §3) in the channel.

To place our results in context, we have shown in figure 18 the data of Moka &
Nott (2005) for the PDF at a location within the shear layer for glass beads flowing
in rough-walled three-dimensional channels. A few important features of the PDF
are apparent. (i) We note that fx(ξx) is not symmetric about ξx = 0 (figure 18a) – the
decay of fx is more rapid for negative ξx than for positive values. Thus, it appears
that gravity induces a preference for large downward velocity fluctuations. (ii) fy(ξy)
is symmetric about ξy = 0, as there is no preferred direction for horizontal velocities.
(iii) In both directions, the PDF decays as a power law, fi(ξi) ∼ |ξi |−n, when |ξi | is
sufficiently large. (iv) Perhaps one of the most surprising features is that the PDFs
for all the channel widths collapse into a single curve. In addition, Moka & Nott
(2005) found that the PDFs are identical in the shear layer and the core; indeed,
within the region of fully developed flow, it is virtually independent of the position in
the channel. Thus, although v varies across the channel, and v(y) depends on W/dp

(see figure 11), the distribution of the fluctuation velocity scaled by v appears to be
universal.

Orpe & Kudrolli (2007) found agreement with some key aspects of the results of
Moka & Nott (2005); they too found that the velocity distribution has a power-law
tail. However, they also observed some differences; they found fx(ξx) to be symmetric
about zero, but Moka & Nott (2005) found it to be distinctly asymmetric. It is not
clear how these difference are related to the presence of a retarding wall in our
study, and a viscous suspending liquid in theirs, but they point to the need for the
non-invasive measurement of velocity fluctuations far from the walls using a method
that does not require a suspending liquid, such as magnetic resonance imaging.

We now consider the PDF for the flow of aluminium disks in the two-dimensional
channel. The PDF is presented in figure 19, where the data of Moka & Nott (2005) for
a three-dimensional channel of width W/dp = 23.4 is given for comparison. The rough
trends in the two cases are similar, but some differences are apparent. There is an
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the �, two- and �, three-dimensional channels for (a) vertical, and (b) horizontal velocity
fluctuations. Filled symbols represent positive fluctuations, and open symbols represent negative
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the same variance. Data for the three-dimensional channel (W/dp = 23.4) are from Moka &
Nott (2005). The straight lines represent the power-law fits obtained by Moka & Nott (see
figure 18).

10–1

10–2

10–2 10–2 100

100

–2 –1 0 1 2

100

10–1

10–2

f (
η
)

Figure 20. Probability distribution function of particle spin fluctuations. Filled symbols
represent positive fluctuations, and open symbols represent negative fluctuations. The dotted
line represents the Maxwell–Boltzmann distribution with the same variance. The straight line
is the power-law fit of the data for large |η|.

asymmetry in the distribution of ξx about ξx = 0, and the PDF deviates significantly
from the Maxwellian, but we cannot discern a power-law tail. The PDF of ξy is
roughly symmetric about ξy = 0, and appears to have a power-law tail of roughly the
same exponent as in the three-dimensional channel, but the value of fy at large |ξy |
is lower.

The PDF of particle spin fluctuations in the two-dimensional channel (figure 20) is
almost perfectly symmetric about zero, and deviates significantly from the Maxwellian.
The symmetry about η = 0 is expected, as there is no preferred direction for spin
fluctuations. For the limited range of spin fluctuations that we were able to measure,
there appears to be a power-law tail. Howell et al. (1999) had measured the PDF of
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spin in cylindrical Couette flow, but their data differ qualitatively from ours: they
found a distinct asymmetry in the PDF about η = 0, and the decay is not of the form
of a power law, but has a more complicated structure. Part of the difference may be
because the disks in their experiment were supported on a horizontal surface, whose
retardation must have been significant, but we are unable to explain the asymmetry
in their distribution of spin.

We now consider the spatial and temporal correlation functions of the velocity
fluctuations. These functions throw light on the nature of deformation of the material.
The spatial correlation function of any property p over a separation R is defined as

Cp
r (R) ≡ 〈p′(t, r) p′(t, r + R)〉

〈p′(t, r)2〉
, (5.1)

where p′(t, r) is fluctuation in p at position r , i.e. the difference between its
instantaneous value and its long-time average at the same location. The angle brackets
indicate an average over all pairs of particles separated by a distance R; if the system
is in a statistically steady state (as is the case in our experiments), the averaging may
be done over time. Here, we only consider the spatial correlation of ux and ωz with
distance Y in the y-direction, and denote them as Cu

y (Y ) and Cω
y (Y ), respectively.

Figure 21(a) shows the two quantities for the two-dimensional channel, with the
data of Moka & Nott (2005) for a three-dimensional channel of width W/dp = 23.4
shown for comparison. In all the cases, the reference point y is the mid-point of
the shear layer. Considering Cu

y (Y ) first, we note that it decays with Y , but not to
zero. Thus, a correlated solid-like motion of the particles is superimposed over the
uncorrelated fluid-like motion. However, the degree of correlation is much higher in
the two-dimensional channel. This provides an explanation for the shear layer being
thinner in the two-dimensional channel (see figure 12). In contrast, the decay of Cω

y (Y )
to zero shows that spin fluctuations are not correlated over long distances.

The correlation of property p over a time interval T is measured by the time
correlation function

C
p
t (T ) ≡ 〈p′(t, y) p′(t + T , y)〉

〈p′(t, y)2〉
. (5.2)
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Unlike the spatial correlation, we determined the time correlation for the velocity and
spin averaged over the particles in a bin, not for the velocities of individual particles.
This is because the particles could not be tracked for distances greater than the frame
size. Figure 21(b) shows that the fluctuations become uncorrelated very quickly.

We believe that the strong spatial correlation of the translation velocity, implying
solid-like motion, is a result of the stick–slip (Budny 1979; Nasuno et al. 1998), or
jamming–unjamming, phenomena that is known to exist in dense granular flows.
This leads to an explanation for the presence of velocity fluctuations in the core (see
figure 11) where the macroscopic shear rate is negligibly small. We believe that when
the medium is released, or unjammed, during the slip phase, the unbalanced force
accelerates the particles for a short period of time. The kinetic energy acquired by
the particles is partly dissipated as true thermal energy (heat) and partly converted to
fluctuational modes in the next stick or jammed phase. This cycle occurs repeatedly,
maintaining a steady state. The rapid decay of the time correlation to zero indicates
that the stick–slip motion itself is uncorrelated beyond a short time scale.

Orpe & Kudrolli (2007) measured Cu
y (Y ) in the core, but far from the front and

back walls, and found that it drops to a roughly constant plateau for Y > 2dp. Though
their value of Cu

y (Y ) in the plateau is significantly smaller than what we observe, it
is nevertheless finite, supporting our above hypothesis on the generation of velocity
fluctuations in the absence of a macroscopic shear rate.

6. Summary and conclusions
We have studied experimentally the flow of model granular materials through ver-

tical channels in two- and three-dimensional channels, by video imaging and particle
tracking. In both types of channels, the translational velocity of each particle was
determined by tracking its centroid. In the two-dimensional channel, the spin of each
disk was determined by tracking the orientation of the diametral stripe marked on
its flat surfaces. From the velocity and spin of each particle, the profiles of the mean
velocity ux and spin ωz fields, and the r.m.s fluctuations of the velocity v and spin
ω′ were determined. The velocity profiles were determined for a range of the channel
width W , in order to assess the effect of W on the shear-layer thickness. In addition,
certain statistical properties of the velocity and spin fluctuations were examined.

As in previous studies on dense granular flows, we find that the material shears only
in thin layers adjacent to the walls, while the core region near the centre moves as a
plug. Contrary to popular belief, the thickness of the shear layer is not a constant, but
grows with the channel width. This result is in agreement with the prediction of the
frictional Cosserat model of Mohan et al. (1999, 2002). The shear-layer thickness dpΔ

grows weakly with W/dp, where dp is the particle diameter, which is also a prediction
of the model. The model involves two parameters, namely the slip coefficient K

and the mesoscopic length L; these were chosen by obtaining a fit with the measured
velocity profile for the widest channel with smooth and rough walls. A slight deviation
of the model prediction from the data is seen for smaller W/dp, but overall there is
good agreement.

An important, and surprising, observation in our investigation is the presence of
relatively large velocity fluctuations in the channel core, where the macroscopic shear
rate dux/dy is virtually zero. For all the values of W/dp, the profile of v shows a
minimum near the wall, and a maximum at the channel centre, y =W (see figure 11).
One explanation for the generation of fluctuational motion in the core could be that
there is a finite velocity gradient in the z-direction, and the stress work σzx × (dux/dz)
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is dissipated as fluctuational kinetic energy. However, this does not explain why v is
maximum at the centre, as the shear rates in the y- and z-directions are largest near
the walls. A more plausible explanation for the generation of velocity fluctuations is
suggested by the behaviour of the spatial correlation of velocity fluctuations, discussed
below. This observation casts doubt on the conventional notion that the central core
of the channel moves as a solid plug, suffering no deformation – it indicates that
there are fluctuations in the deformation rate, though the time-averaged deformation
rate may be vanishingly small.

One of the important features of a Cosserat continuum is the deviation of ω from
half the vorticity w. We determined the z-component of this difference in the two-
dimensional channel from the measured profiles of ωz and ux , and found it to be
significant in a layer of thickness ∼7 dp from the walls. The spin leads the vorticity,
and the difference ωz − wz decreases with distance from the wall, though small spatial
oscillations render the variation non-monotonic. The thickness of the layer over which
the vorticity and spin are significant is lower than that predicted by the model. We
believe that the confinement of the particles to a monolayer reduces the thickness of
this layer and causes the spatial oscillations, owing to the strong spatial correlations
that are observed in two-dimensional systems.

The second aspect of our study is the statistics of particle velocity and spin
fluctuations. The probability distribution function (PDF) of velocity fluctuations in the
two-dimensional channel is found to be roughly similar to that observed by Moka &
Nott (2005) for three-dimensional channels, but some differences are evident. As
in Moka & Nott, the PDF of velocity fluctuations in the x (flow)-direction is not
symmetric about zero, it is roughly symmetric for the y (gradient)-direction, and
departs significantly from the Maxwellian for both directions. We do not discern a
power-law tail in the PDF of the velocities in the x-direction, but it appears close
to a power law in the y-direction. The PDF of spin fluctuations is symmetric about
zero, and appears to decay as a power law.

The spatial correlation of velocity fluctuations is much stronger in the two-
dimensional channel than in three-dimensional channels, implying that solid-like
motion is more prevalent in the former. This provides an explanation for the thinner
shear layer in the two-dimensional channel. However, the spatial correlation of spin
decays rapidly with the separation distance to zero. The time correlation of velocity
and spin fluctuations also decay quickly. We infer from these observations that the
deformation is not smooth and continuous, but occurs by repetitive stick–slip, or
jamming–unjamming transitions. As argued by Moka & Nott (2005), this suggests
a plausible mechanism for the generation of fluctuations even in the absence of a
macroscopic shear rate: during each slip or unjamming phase, there is an unbalanced
force which results in a momentary and localized acceleration, and the kinetic energy
gained is transferred to fluctuational modes in the next stick phase.

Our findings have a bearing on some models that have been proposed for the
rheology of slow dense granular flows. Savage (1998) proposed a model in which he
argued that the strain rate at any location fluctuates in time, with a standard deviation
ε, and determined the macroscopic stress tensor 〈σ 〉 by computing its average over a
distribution of strain rates. To achieve closure, he assumed that ε is proportional to
the granular temperature T , which is determined by a balance for the fluctuational
kinetic theory, derived from kinetic theory. In light of our results, it appears that the
idea of accounting for fluctuations in the strain rate has merit. However, we do not
believe that ε is directly related to T , as we observe large fluctuations even in the
core, where the stress work resulting from the macroscopic strain rate is negligibly
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small. Moreover, an energy balance derived for the rapid flow regime, where grain
inertia determines all interactions, is not appropriate for the regime of dense slow
flow. Some other studies, such as Mohan et al. (1997), have assumed that material
is below the threshold of plastic yield. This too appears untenable when there are
significant velocity fluctuations within the core.

Thus, while it is desirable to incorporate strain-rate fluctuations in a rheological
model, a better understanding of the correlation between the fluctuations in the stress
and fluctuations in the velocity and strain rate is required. On the experimental front,
non-invasive imaging of particle motion in the bulk, i.e. far from the walls would go
a long way to building an understanding of the kinematics and statistics.
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Géotechnique 37, 271–283.

Nasuno, S., Kudrolli, A., Bak, A. & Gollub, J. P. 1998 Time-resolved studies of stick–slip friction
in sheared granular layers. Phys. Rev. E 58, 2161–2171.

Natarajan, V. V. R., Hunt, M. L. & Taylor, E. D. 1995 Local measurements of velocity fluctuations
and diffusion coefficients for a granular material flow. J. Fluid Mech. 304, 1–25.

Nedderman, R. M. 1992 Statics and Kinematics of Granular Materials . Cambridge University Press.

Nedderman, R. M. & Laohakul, C. 1980 The thickness of shear zone of flowing granular materials.
Powder Technol. 25, 91–100.

Orpe, A. V. & Kudrolli, A. 2007 Velocity correlations in dense granular flows observed with
internal imaging. Phys. Rev. Lett. 98, 238001.

Prakash, J. R. & Rao, K. K. 1991 Steady compressible flow of cohesionless granular materials
through a wedge-shaped bunker. J. Fluid Mech. 225, 21–80.

Reynolds, O. 1885 On the dilatancy of media composed of rigid particles in contact. With
experimental illustrations. Phil. Mag. 20, 469–481.

Savage, S. B. 1998 Analyses of slow high-concentration flows of granular materials. J. Fluid Mech.
377, 1–26.

Schofield, A. N. & Wroth, C. P. 1968 Critical State Soil Mechanics . McGraw-Hill.

Tardos, G. I., Khan, M. I. & Schaeffer, D. G. 1998 Forces on a slowly rotating, rough cylinder in
a Couette device containing a dry, frictional powder. Phys. Fluids 10, 335–341.

Tejchman, J. & Gudehus, G. 1993 Silo-music and silo-quake experiments and a numerical Cosserat
approach. Powder Technol. 76, 201–212.

Tejchman, J. & Wu, W. 1993 Numerical study of patterning of shear bands in a Cosserat continuum.
Acta Mech. 99, 61–74.

Vincent, L. & Soille, P. 1991 Watersheds in digital spaces: an efficient algorithm based on
immersion simulations. IEEE Trans. Pattern Anal. Machine Intell. 13, 583–598.




